On closed Lie ideals of certain tensor products of C∗-algebras
نویسندگان
چکیده
منابع مشابه
the structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولOn the Lie ideals of C∗-algebras
Various questions on Lie ideals of C∗-algebras are investigated. They fall roughly under the following topics: relation of Lie ideals to closed two-sided ideals; Lie ideals spanned by special classes of elements such as commutators, nilpotents, and the range of polynomials; characterization of Lie ideals as similarity invariant subspaces.
متن کاملA Note on the Closed Ideals of Prosemisimple Lie Algebras
We extend the basic fact that every ideal of a finite dimensional semisimple Lie algebra has a unique complement to the case of closed ideals of prosemisimple Lie algebras. We prove that if A is a closed ideal of a prosemisimple Lie algebra L = lim ←−−Ln (n ∈ N), where the Ln are finite dimensional semisimple Lie algebras, then there exists a unique ideal B of L such that L = A ⊕ B. Mathematics...
متن کاملLie $^*$-double derivations on Lie $C^*$-algebras
A unital $C^*$ -- algebra $mathcal A,$ endowed withthe Lie product $[x,y]=xy- yx$ on $mathcal A,$ is called a Lie$C^*$ -- algebra. Let $mathcal A$ be a Lie $C^*$ -- algebra and$g,h:mathcal A to mathcal A$ be $Bbb C$ -- linear mappings. A$Bbb C$ -- linear mapping $f:mathcal A to mathcal A$ is calleda Lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...
متن کاملAnti fuzzy Lie ideals of Lie algebras
In this paper we apply the Biswas's idea of anti fuzzy subgroups to Lie ideals of Lie algebras. We introduce the notion of anti fuzzy ideals in Lie algebras and investigate some of their properties.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Nachrichten
سال: 2017
ISSN: 0025-584X
DOI: 10.1002/mana.201700009